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Outline
• Introduction
• Fabrication and integration
• Recent advances in understanding SNWTs

– Parasitic effects
– Self-heating effects
– Variability

• Recent nanowire circuit demonstrations
• Summary
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Introduction - 1/5
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Introduction - 2/5
We are entering the multi-gate era!

• Intel’s 22nm is Tri-gate transistor

• What’s next?
Source: M. Bohr and K. Mistry, http://www.intel.com
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Introduction - 3/5
Next: Gate-all-around Nanowire Transistor
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Channels

Extreme
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 “the ideal transistor”
 best gate controllability
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Strongly-confined quasi-1D structure

Introduction - 4/5
How to fabricate this device?

Did we know all about this kind of device?
• We already have the scaling theory for Tri-gate and GAA
• But, one cannot simply scale GAA properties to get  

correct understanding of Si nanowire transistor

Carrier
transport?

Carrier
transport?

Self-
heating?

Self-
heating?

Noise?Noise?

Reliability?Reliability? Source Drain

3D 
System

3D 
System
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Drain Ext.

Gate
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Source Drain

3D 
System

3D 
System

Quasi-1D System

Drain Ext.
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Source Ext.

Variability?Variability?

Parasitics?Parasitics?

fundamentally
different !

Fabrication?Fabrication?
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Transport?Transport?

Self-heating?

Reliability?Reliability?

Variability?Variability?

Parasitics?Parasitics?

Noise?Noise?

GAA SNWTs

R. Wang, et al., IEDM 2008
R. Wang, et al, T-ED 2008

J. Zhuge, et al., T-ED 2008
J. Zou, et al, T-ED 2011

J. Zhuge, et al., EDL 2008
J. Zhuge, et al., APL 2009
C. Liu, et al, IEDM 2011J. Zhuge,et al., IEDM 2009

R. Wang, et al, IEDM 2010
C. Liu et al, IEDM 2011
T. Yu, et al., T-ED 2010
R. Wang, et al, T-ED 2011.

R. Wang, et al., IEDM 2008
J. Zhuge, et al., T-Nano 2008
X. Huang, et al., ISQED 2012

R. Wang, et al., IEDM 2007
L. Zhang, et al., IEDM 2008
L. Zhang, et al., VLSI 2009
C. Liu, et al., T-ED 2010
C. Liu, et al., IEDM 2011

• clarify the related physics
• find the challenges for optimization
• new characterizing techniques
• ……

Introduction - 5/5

Fabrication?Fabrication?
Y. Tian, et al., IEDM 2007

 Fabricate this device from top-down approach 
 Evaluate the key device characteristics for circuit 

applications with confined quasi-1D structure
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Key Messages: Preview
• Fabrication and integration: almost Manufacturable
• Recent advances in understanding SNWTs

– Intrinsic carrier transport: near-ballistic transport
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Key Messages: Preview
• Fabrication and integration: almost Manufacturable
• Recent advances in understanding SNWTs

– Intrinsic carrier transport: near-ballistic transport
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[this work]
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[4]
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[1]

[1] J. Jeon, et al., VLSI 2009, p. 48
[2] T.-Y. Liow et al., IEDM 2006, p. 473 
[3] V. Barral et al., Solid-State Electron., 

51, p. 537, 2007. 
[4] Y. Taur et al., IEDM 1998, p. 789
[5] S.D Suk et al., VLSI 2009, p. 142

• Better BSAT than planar and double-gate devices
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Key Messages: Preview
• Fabrication and integration: almost Manufacturable
• Recent advances in understanding SNWTs

– Intrinsic carrier transport: near-ballistic transport
– Low-frequency noise: slightly degraded and fluctuated
– Parasitic effects (R and C): should be optimized
– Self-heating effects: observable when dNW<14nm
– Variability: holds the record low (static) variations
– Reliability: HCI is OK, but NBTI needs more studies

• Recent nanowire circuit demonstrations: On the way
– SRAM, ring oscillator, current mirror…

• Other benefits for 3D integration, MtM applications…
• Summary: We are facing a great opportunity!
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Key Messages: Preview
• Fabrication and integration: almost Manufacturable
• Recent advances in understanding SNWTs
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• Recent nanowire circuit demonstrations: On the way
– SRAM, ring oscillator, current mirror…

• Other benefits for 3D integration, MtM applications…
• Summary: We are facing a great opportunity!
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Outline
• Introduction
• Fabrication and integration

– based on bulk (our focus)
– based on SOI
– with stacked NW channel

• Recent advances in understanding SNWTs
– Parasitic effects
– Self-heating effects
– Variability

• Recent nanowire circuit demonstrations
• Summary



13

Purdue

TiN

SiO2

Si
Samsung

SNWGox SNWGox

Poly-Gate

BOX

SNWGox SNWGox

Poly-Gate

BOX

NUS

Poly Silicon

Oxide
10 nm Silicon Nanowire

Poly Silicon

Oxide
10 nm Silicon Nanowire

OxideOxide

10 nm Silicon Nanowire10 nm Silicon Nanowire

OxideOxide

10 nm Silicon Nanowire10 nm Silicon Nanowire

PKU

NUS

IBM
LETI

C. Dupré et al., 
IEDM, 2008
LETI

Top-down process for SNWTs

IEDM, 2006
NUS

IEDM, 2005
Samsung

IEDM, 2007
PKU

• Key points
– NW formation
– NW releasing or suspending

Sato S, et al., SSE, 
2010, TIT

S. Bangsaruntip
et al., IEDM, 2009
IBM

TIT
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Bulk SNWTs - Samsung method

S.D.Suk et al., IEDM, 2005

HM Trimming for NW definition
SiGe/Si stack epi for releasing

HM trimming

diameter = 10nm
tOX=3.5nm
TiN metal-gate
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Self-aligned bulk SNWTs by epi-
free compatible process

 based on bulk substrate
 NW originally defined by e-beam, thinning 
and cylinder channel shaping by self-limiting 
oxidation and annealing
 NW released by isotropic etch with HM 

Y. Tian et al., IEDM, 2007, PKU
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Nitride fin patterning & 
S/D implantation

Oxide

Si Substrate

Source

Oxide

Drain

Oxide

Si Substrate

Source

Oxide

Drain

Silicon fin etchingNitride spacer formation

Gate trench 
etching after oxide 
deposition
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Silicon etching 
surrounding fin channel

Si etching under 
channel

BPT(bottom parasitic 
transistor) Stopper layerHard mask removal
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Cylindrical shaping Gate oxidation &Poly-Si 
gate formation

• diameter = 10nm
• tOX=5nm
• Poly gate
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aa bb cc

Increasing oxidation time: from triangle to circle

SiO2
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Experimental results of NWFETs

Single wire

Multiple wireY. Tian et al., IEDM, 2007, 
PKU

SourceSource

DrainDrain

Damascene Damascene 
Gate GrooveGate Groove
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Current mirror (CM) based on SNWTs

2T CM

cascade CM

Single NW

R.Huang et al.,T-ED,2011,PKU adjust current ratio 
with NW number

Multi NW
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OVC(%)=100(IOUT/IOUT)/VOUT
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Outline
• Introduction
• Fabrication and integration
• Recent advances in understanding SNWTs

– Parasitic effects (Rpar and Cpar)
• dominant factors in Rpar and Cpar

– Self-heating effects
– Variability

• Recent nanowire circuit demonstrations
• Summary
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Parasitic R and C in GAA SNWTs
• SNWT is worse 

than planar devices 
and FinFETs
– larger and 

dominant SDE 
series resistances

– larger outer fringing 
capacitances

Rsd
Rext

Rsd



25

Cparasitic = Cof + Cif + 
Cov + Cside

Parasitic capacitances in SNWTs

Cof = Cof_gsd + Cof_gex

• A predictive model for parasitic C in SNWTs 
has been developed*

*Jibin Zou et al., T-ED, vol. 58, no. 10, Oct. 2011,PKU
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Impacts of parasitic C -1/2
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Key messages for design optimization 
of parasitics in SNWTs

• multi-wire structure is needed
– with merged SDE structure

• gate height need to be reduced
• Optimizations in SDE regions

– different from DG FinFETs
• FinFETs: underlap is 

better 
• SNWTs: overlap is better
 due to better gate control 

capability in SNWTs
 can effectively reduce Rext

but with smaller impact on 
Cparastic

J. Zhuge et al., T-ED 2008, p. 2142; 
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Outline
• Introduction
• Fabrication and integration
• Recent advances in understanding SNWTs

– Parasitic effects (R and C)
– Self-heating effects (SHE)
– Variability

• Recent nanowire circuit demonstrations
• Summary
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Transistor thermal challenges 
at nanoscale -1/2

E. Pop et al.
IEDM 2001

Rocket 
Nozzle

Hot 
Plate

Nuclear 
Reactor

Increasing 
self-heating 

with size 
shrinking

 Headache for analog circuits
 mismatch issue due to 

thermal distribution
 Reliability: NBTI …
 Thermal noise
 ……

E. Pop, Proc IEEE 2006
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Transistor thermal challenges 
at nanoscale -2/2

Worse SHE for scaled technology:  Confined geometries 
(thin Si films in UTB, DG…) and novel materials (SiGe, 
Ge, silicide…) with poor thermal conductivity

E. Pop, Proc. IEEE 2006

• SNWTs: more confined structure
So, how about the self-heating?

IBM
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SHE Characterization of SNWTs
• AC conductance method
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R. Wang, et al., IEDM 2008,PKU

SNWTs on fully bulk substrate 
(w/o e-SiGe S/D or SOI)
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• SHE in SNWTs even on bulk-Si substrate is a 
little bit worse than SOI devices

Comparisons

[12] G. Guegan et al., Mater. Res. Soc. Symp. Proc., 2006; [13] K. Etessam-Yazdani et al., ITHERM, 2006; [14] B. 
M. Tenbroek et al., IEEE TED, 1996; [15] W. Jin et al., IEDM, 1999; [x] A.J. Scholten et al., IEDM 2009.
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Improvement by increasing heat 
dissipation through the gate stack?

• High-k gate dielectric has better thermal 
conductivity than SiO2 or SiON gate material

• but still have non-negligible SHE when dNW < 14nm

S. Bangsaruntip, et al., VLSI 2010

HfOx / TaN gate, LG=21nm
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• 1D heat transport for strongly-confined NW structure
– limited modes for heat dissipation

Why degraded SHE in SNWTs?

Source Drain

3D 
System System

Source Drain

TS TD

1-D heat transport

contact thermal resistance

q

BOX

TS TD

2-D heat transport
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• 1D heat transport for strongly-confined NW structure
– limited modes for heat dissipation

Why degraded SHE in SNWTs?

• Additional contact thermal resistance
– abrupt interface between 1D-NW and 3D-S/D region 
– does not exist in planar devices 

• GAA: increased surface/volume ratio, strong phonon-
boundary scattering and thus increased boundary Rth
– worse than UTB SOI, DG/TG structures

Source Drain

3D 
System System

Source Drain

TS TD

1-D heat transport

contact thermal resistance

q

BOX

TS TD

2-D heat transport
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Thermal conductivity model for Si NWs
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[a] A. I. Hochbaum et al., Nature, vol. 451, p.163, 2008. 
[b] D. Li et al., APL, vol. 83, p. 2934, 2003. 
[c] P. Martin et al., PRL, vol. 102, p. 125503, 2009.

The model includes 
diameter dependence, 
surface roughness 
and gate length 
dependence.

X. Huang, et al., to be published.
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Equivalent Thermal Network for SNWTs

Multi‐wires

in parallel

T=300K

T=300K
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X. Huang, et al., to be published.
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Outline
• Fabrication and integration (a quick review)
• Recent advances in understanding SNWTs

– Intrinsic carrier transport
– Parasitic effects (R and C)
– Low-frequency noise
– Self-heating effects
– Variability

• Recent nanowire circuit demonstrations
• Summary
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• Variability challenges in nano-CMOS
– new process technologies
– new materials
– much smaller devices

die-to-die

wafer-to-wafer

within-die

 

die-to-die

wafer-to-wafer

within-die

 

“There’s also plenty of noise 
and variation at the bottom…”

“There’s plenty of room at the bottom” -- Richard P. Feynman
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Variation in nano-scale devices

• Random variations near atomic dimensions 
– impacts circuit functionality and stability

• New architecture NWFET with ultra-scaled 
dimension and surrounding gate structure
– What about its variability?

Random Dopants, Line Edge 
Roughness, High-k Morphology, 
Metal Gate Granularity…

OPC, Layout Dependent Strain…

Random

Systematic
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• Elimination of random dopant fluctuation (RDF) in 
the channel, what about other sources?

What about GAA nanowire MOSFETs?
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New sources:
diameter variation, NW LER/LWR, NW SDE RDF
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Impacts of Variation Sources in SNWTs
(Experimental Extraction Results)
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Discussion - 1/2: SDE RDF (1)
implant variation near 

the interface

RTA variation

R. Wang et al., T-ED 2011, p. 2864.PKU
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• Diameter-Dependent Annealing (DDA): 
thinner NW results in faster diffusion
– Rext reduction and variation
– Leff reduction and variation

3-D KMC simulations
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Discussion - 2/2: SDE RDF (2)
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SNWT vs. planar MOSFET – Simulations -1/2

Planar
Lg=32nm

SNWTs
Lg=32nm

Planar
Lg=32nm

SNWTs
Lg=32nm

• SNWT-based SRAM cells
– Larger NM and less variation of noise margin 

• intrinsic channel and excellent SCE-suppression
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SNWT vs. planar MOSFET – Simulations -2/2
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• Scaled SNWT-based SRAM cells 
– Less NM variation and much less static 

power consumption
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Comparisons with FinFET and 
UTB SOI Devices

• Experimental demonstrations so far
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• First-order device-level comparisons 
with FinFETs

Main device characteristics 
Comparison with FinFETs
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Outline
• Introduction
• Fabrication and integration
• Recent advances in understanding 

SNWTs
– Parasitic effects
– Self-heating effects
– Variability

• Recent nanowire circuit demonstrations
• Summary
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• SRAM (Samsung, VLSI 08)
– Larger SNM than planar and 

FinFET devices
– Smallest variation demo

• Current Mirror (Peking Univ., T-ED 11)
– Good performance in both inversion and subthreshold

regions
• 25-Stage Ring Oscillators (IBM, VLSI 10)

– dNW= 3~14 nm, LG= 25~55 nm
– Limited by the SDE series resistance, need further 

improvement

Circuit demonstration is at early stage
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Outline
• Introduction
• Fabrication and integration 
• Recent advances in understanding SNWTs

– Parasitic effects
– Self-heating effects
– Variability

• Recent nanowire circuit demonstrations
• Summary
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Key Messages for GAA SNWTs: Summary
Almost manufacturable: but still needs 

better process controllability
Variability: lowest (static) variations 

– key variation sources for further optimization: 
diameter variation, WFV, NW LER, SDE RDF

? Relatively severe parasitic effects
? Non-negligible SHE even on bulk: thermal 

balanced design needed
? Circuit demonstration: still on the way
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Source Drain

Drain Ext.

Gate

Source Ext.

Source Drain

Drain Ext.

Gate

Source Ext.

Quasi-1D cylindrical channel
• transport
• self-heating
• reliability

Multiple surface orientations
• reliability
• noise

Strong confinement with GAA
• transport
• reliability
• noise (RTN)

3D S/D interfaced with 1D NW
• transport
• self-heating
• parasitics

Shallow SDE region
• variability
• parasitics
• noise…

Structure features should be included

Further in-depth understanding and special 
device-circuit co-design expected 
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Thank  You  Very  Much !


